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N U M E R I C A L  M O D E L I N G  O F  T H E  A P P E A R A N C E  
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I N  P O R O U S  M A T E R I A L S  

A .  L. M a k s i m e n k o  a n d  M .  B.  S h t e r n  UDC 621.762 

The  capacity for deformation localization is an important  characteristic feature of plastically deformable 
solids. It is of theoretical and practical interest to elucidate the circumstances and conditions of localization 
and to determine the parts of a sample in which localization can occur. Extensive literature is devoted to the 
localization of deformation. This paper concerns only the macroscopic manifestations of localization in the 
form of slip bands (Luders bands). 

Most naturally these effects can be modeled within the framework of approaches that  allow for both 
the strengthening and weakening of materials under deformation. The theory of plastic porous solids refers 
precisely to this class of models. An increase in porosity under stretching weakens the material. The localization 
condition in the simplest case reduces to the "violation of equilibrium" (in some sense) between strengthening 
and weakening toward weakening. Briefly this is discussed in the first section although the paper mainly 
reports results of direct numerical modeling of the appearance of slip bands in porous materials. 

1. T h e  P e c u l i a r i t i e s  of  D e f o r m a t i o n  Loca l i za t ion  in P o r o u s  M a t e r i a l s .  A macroscopic slip 
band is a narrow region of active plastic strain dividing the practically nondeformed material on each side of 
the band. As a rule, one of the dimensions of this localized flow region is substantially smaller than the rest. 
However, as soon as one passes to the limiting case and considers a slip band as the velocity jump surface in 
the irreversibly deformed porous material, these jumps turn out to be nonexistent [1]. It is more convenient 
to regard the slip band as the limiting approach of two neighboring (e.g., at a given distance h << 1) surfaces 
of weak jumps  (characteristics) without separating the development of localization from the final result. On 
the surfaces of weak jumps the velocity vector is continuous, whereas the components of the strain rate tensor 
are discontinuous. As h ~ 0 we arrive, generally speaking, at the required surface of the velocity jump in the 
material studied. 

We further consider only plane deformation of rigid-plastic porous material. The numerical analysis is 
based on the theory of plastic flow. 

The  slope angle/3 of the characteristics (if they exist) to that  of the deformation plane axes for an 
irreversibly compressible plastic material whose loading surface is of the form 

r) =o  

is determined either from the relation [1] 

tan fl = 3 
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or, in terms of the strain rates, from the relation [2] 

sin 2er 4- V/1 - s 2 
tan 5 = 

cos 2~ + s l  

In this case, p, r are the first invariant tensor and the second invariant of the deviator stress tensor; Sl = e/71 

(71 = ~(ex - ey) 2 + 4%2y); e and 7 are analogous invariants of the strain rate tensors; a is the slope angle of 
one of the principal directions of either the strain rate tensors or of the stress tensor to the chosen coordinate 
axis; 0 is the porosity; F is the strengthening parameter of a solid phase in the porous medium. 

At least one family of characteristics exists providing that 

2 lop I<~ V~l ,I,,- I (1.1) 

o r  

s l ~ l .  

The above condition is necessary for the existence of a localization band. In this case, the band forms the 
angle 5 with the coordinate axis. We set q~ in the form [2] 

p2 .r2 
r  -g + 7 -  ( 1 -  o>,=, 

where ~b = (2/3)((1 - e)a/e); = (1 - e)=; is a constant that corresponds to the constant in the Mises 
yield condition for a nonporous material. In uniaxial stretching, the associative law gives 

e 36 , ,  = - = ( 1 . 2 )  

71 4 -- 3~ " 

As follows from Eq. (1.2), the slope angle of the slip band depends on porosity. At 0 = O we obtain the 
well-known result for the slope angle of the slip band in a nonporous material. 

Since at the instant when the band appears the value of sl fits both the sample as a whole and the 
behavior of the material within the band, formula (1.2) suggest another important conclusion that the rate 
of the volumetric strain e within the band differs from zero. Thus, the band of localized strain in a porous 
material is not a pure slip band. When passing through the band, the jump of material rate component, 
normal to the slip band surface, is nonzero. This has first been observed by Shield in his classical paper on 
the application d the associated flow law to materials with a Coulomb-Mohr loading surface [3]. 

Only one conclusion can be drawn from the softening of the material. In the limit h --~ 0, the localized 
strain band is the surface of loss of continuity of the material, i.e., the fracture surface. This interpretation 
agrees with experimental observations (at least for uniaxial or biaxial stretching). Probably, in some cases, 
violation of the initial hypothesis of the model for small h will be significant, e.g., the mechanisms of defect 
healing appear immediately in the band. Obviously, in this case, the limiting transition h --+ 0 is incorrect [3]. 
We have not studied models of this type. 

The most important condition for the appearance of a slip band in the model material studied is the 
violation of the material 's "physical stability," i.e., the Drukker postulate. With our notation this condition 

is 
0 ~  �9 0 q ~  �9 

+ b-FF < 0. (1.3) 

In the numerical modeling a porous material with an ideally plastic solid phase (F = 0) in tension was 
considered and hence (1.3) was fulfilled. 

2. M o d e l i n g  of  t h e  A p p e a r a n c e  of  Local ized S t r a i n  Bands .  The occurrence of a slip band 
was modeled within the framework of plane strain for uni- and biaxial stretching of a porous sample with a 
square cross section. The framework of the porous sample was assumed to be an ideally plastic material. In 
general, due to increase in porosity, the material softened. The problem of determining the velocity fields for 
the elements of this material is, generally speaking, incorrect. However, it is physical instability (resulting in 
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incorrectness in the statement of the problem) that stimulates the transition of the homogeneous deformation 
regime to the localized regime. The problem can be solved only by using regularization procedures. In our 
case, these are the finite-dimensional approximation of the starting equations and the approach in [4] which 
employs, within the framework of the finite element method, a procedure similar to the averaging of flow rates 
in the conditional time step used in modeling the process. 

Use of the above methods essentially changes the rheological properties of the material because of the 
appearance of viscosity due to approximation. Generally speaking, the magnitude of this viscosity is unknown. 
Therefore, it is impossible to determine the evolution of the real process with real time using such a model. 
The goal of the present paper is to elucidate the geometric characteristics of the deformation regimes that 
replace homogeneous deformation once a given material loses physical stability. Note that the idea to study 
the behavior of physically unstable materials is now widely acknowledged [5]. For plastic flow this approach 
was first employed in [6]. 

Stretching of a Plane-Deformed Sample with One Inhomogeneity. The position of the localized band 
in the sample was fixed by fixation of a local inhomogeneity (the regions with greater porosity). The mean 
porosity of the sample is 0.2, and the porosity of the inhomogeneity region is 0.4. The inhomogeneity region 
is observed at the lower right of Fig. 1. 

In uniaxial stretching a localized strain band forms at an angle to the stretching direction. As the 
sample is stretched, the porosity in this region increases rapidly to the fracture point of the sample (porosity 
equal to unity). In the remaining volume of the material the porosity does not change (rigid regions). The 
axial flow symmetry is broken, i.e., velocities appear that are perpendicular to the stretching direction and 
correspond to the shear of rigid parts relative to one another. Figure 1 shows the porosity distribution in the 
sample in a time step. 

In the biaxial stretching of the sample, two localized bands arise (Fig. 2). With these deformation 
schemes, relation (1.1) is violated. Indeed, in this case, a single macroscopic band cannot arise, although 
localization still proceeds. 

Note that the statement that a localized strain band appears in the vicinity of an inhomogeneity would 
be inaccurate. The inhomogeneity displays a weakened cross section across which the band can pass. The 
band, in turn, is localized throughout the cross section rather than propagating from the inhomogeneity. This 
can be readily observed in numerical modeling. 

The Interaction of Localized Strain Bands. Upon destruction the real material contains a lot of 
inhomogeneity centers capable of giving rise to slip bands. The interaction of several localization regions 
has been studied using the deformation of a sample with two inhomogeneities as an example. In uniaxial 
stretching each of the inhomogeneities gives rise to a slip band (Fig. 3). The bands are parallel. During 
deformation the density in the more "powerful" band rapidly decreases and the second band stops to develop. 
Thus, the material falls into pieces in a single plane. 

Quite a different pattern is observed in biaxial deformation. In this case, the interaction between 
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inhomogeneities has a considerable effect. The localized sfrain bands join the inhomogeneities into one network 
(Fig. 4). Destruction occurs simultaneously along all lines of this network. 

Inf/uence of the Rheological Properties of Material on the Formation of Localization Regions. The 
existence of slip bands is usually assigned to the plastic properties of material and this is confirmed by 
calculations. Even for the nonlinearity exponents n = 0.1 in the law of nonlinearly viscous behavior of the 
material 

o" o 

the increase in the band with a substantial difference in the porosity within and beyond the band is 
accompanied by its "spreading." The width of the localization region increases considerably and cannot 
be considered as localization on rather coarse grids of finite-element patterns. 

A similar process (the origin of a slip band followed by its vanishing) is typical of the propagation of the 
band in a material containing regions of both physically stable and unstable materials. Figure 5 demonstrates 
the initial stage of deformation. The actual vanishing of the band at the interface can be observed in the 
region of unstable material. Under the conditions of uniaxial stretching, the physically unstable part cannot 
be destroyed independently of the stable one. The localization process gradually decays. 
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